# Nippon Steel's CCS implementation efforts and challenges to achieve carbon neutrality Nippon Steel Corporation February 8, 2024 #### **Carbon Neutral Vision 2050** Released in March 2021 <a href="#"><Aim to reduce CO<sub>2</sub> emissions by 30% by 2030 and achieve carbon neutrality by 2050></a> Our 2030 target is ambitious compared to those of our global peers, and is feasibly aligned with the Japanese government's plan Provision of high-performance steel products and solutions that contribute to reducing CO<sub>2</sub> emissions in society Decarbonization of steelmaking process for providing carbon neutral steel Reduce CO<sub>2</sub> emissions at the time of production and processing by customers Reduce CO<sub>2</sub> emissions at the time of use of our products by end customers Reduce CO<sub>2</sub> emissions in customers' supply chains By providing high-performance steel products and solutions, and by decarbonizing steelmaking process ahead of other countries, we are determined to provide carbon neutral steel to our customers (including approximately 6,000 companies in Japan) and support their international competitiveness. From September 2023, we will launch sales of NSCarbolex® Neutral, a steel product that is certified as reducing CO<sub>2</sub> emissions by a third-party organization. ### Steel making process using the blast furnace method The blast furnace method is currently the only steel production process that mass-produces high-grade steel from iron ore. #### **Carbon Neutral Process** # Our roadmap of CO<sub>2</sub> emissions reduction measures # Our CO<sub>2</sub> decarbonization scenario by CCS - Aiming to implement 1-3 million t-CO<sub>2</sub>/year of CCS in 2030 through advanced CCS projects. - Furthermore, in order to achieve carbon neutrality in 2050, we aim to expand CCS by 20 to 30 million t-CO<sub>2</sub>/year. # **CCS Implementation Approach** #### Target - 1 $\sim$ 3 Mt-CO<sub>2</sub>/year (by 2030) - 20 $\sim$ 30Mt-CO<sub>2</sub>/year (by 2050) #### Implementation Concept - Actively participate in national projects under government policy - Storage at several sites abroad in addition to domestic sites #### Approach - Through the "Advanced CCS Project" by METI/JOGMEC, the first implementation in 2030 and expanded implementation thereafter # Participated in advanced CCS projects # Participated in three leading joint projects coordinated by JOGMEC, "Survey on the Implementation of Advanced CCS Projects" (released Aug. 2<sup>nd</sup> and 3<sup>rd</sup>,2023) - Nippon Steel and other companies have been commissioned with other companies to conduct a feasibility study on the three advanced CCs project in 2023 coordinated by JOGMEC, Japan Organization for Metals and Energy Security - Promote with each company the development of external conditions such as securing storage sites, development of storage infrastructure, and development of laws and regulations. - Nippon Steel is proactively involved in studies related to CO<sub>2</sub> separation and capture, liquefaction, and shipping terminals, based on location restrictions of each steelworks. | | | Storage<br>Kt-CO <sub>2</sub> /Y | Company | emission em | sumed Assumed storage area | |-----------------------------------------------------|----------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------| | CCS around<br>Tohoku area<br>facing sea of<br>Japan | Domest | 2,000 | ITOCHU Corporation Nippon Steel Taiheiyo Cement Corporation Mitsubishi Heavy Industries, Ltd. ITOCHU Oil Exploration Co., Ltd. INPEX Corporation Taisei Corporation | <ul> <li>Ship transportation of liquefied CO<sub>2</sub></li> <li>Storage in the aquifer in the Capture</li> </ul> | ound Tohoku area facing sea of Japan ure from domestic area emission sources | | CCS around capital city area | ic | 1,000 | INPEX Corporation Nippon Steel Kanto Natural Gas Development Co., Ltd. | <ul> <li>Transporting CO<sub>2</sub> through pipelines</li> <li>Storing the CO<sub>2</sub> in offshore coastal zones of the Tokyo metropolitan area</li> </ul> | CCS around capital city area | | CCS around areas<br>facing Pacific<br>Ocean | Overseas | 2,000 | Mitsubishi Corp.<br><mark>Nippon Steel</mark><br>ExxonMobil Asia Pacific Pte.Ltd. | CCS around facing Pacific industries in the Ise Bay/Chubu region Transport and storage to offshore depleted oil and gas field oversea | | # **C-flow in the integrated steelmaking process** - CO<sub>2</sub> emissions from integrated steel works come from coal. - The main sources of CO<sub>2</sub> emissions from steel works are - 1 Coke plants, 2 Blast furnace hot stoves, 3 Power plants and 4 Sintering plants. # CO<sub>2</sub> emission sources in the integrated Steel Works - There are more than 100 exhaust gas sources in the integrated steel works. - It is difficult to install CO<sub>2</sub> capture and liquefaction facilities at each emission sources because existing facilities exist around the CO<sub>2</sub> emission sources. # Major Sources of CO<sub>2</sub> Emissions at Model Steel Works (\*\*1) \*1: Integrated steel works with a pig iron output of 8 Mton/Y assuming major steel works in Japan - Blast furnace hot stoves have the highest CO<sub>2</sub> concentration and considered the most efficient source of CO<sub>2</sub> capture. - To achieve carbon neutrality in the future, it will also be necessary to capture CO<sub>2</sub> from small-scale, low-concentration emission sources such as Rolling and other furnaces. | Emission source | Production | CO <sub>2</sub> Emissions | Exhaust Gas Amount | Exhaust Gas Components | | | | | Nubmer of exhaust gas | |----------------------------|-------------|----------------------------|--------------------|------------------------|------------------|----------------|----------------|----------------|-----------------------| | | (kt-s/year) | (kt-CO <sub>2</sub> /year) | (kNm³/h) | CO <sub>2</sub> | H <sub>2</sub> O | N <sub>2</sub> | O <sub>2</sub> | Others | souce | | ①Coke Plant | 3,800 | 1,900 | 460 | 24% | 5% | 69% | 2% | SOx, NOx, dust | 10 | | ②BF Hot Stove | 8,000 | 3,200 | 720 | 26% | 4% | 69% | 2% | SOx, NOx, dust | 2 | | ③Power Plant | _ | 8,100 | 4,580 | 12% | 4% | 74% | 9% | SOx, NOx, dust | ~4 | | <b>4</b> Sintering Plant | 11,700 | 1,800 | 2,420 | 4% | 1% | 78% | 16% | SOx, NOx, dust | 3 | | 5Heat furnace,Rolling, etc | _ | 900 | 600 | 8% | 18% | 71% | 3% | SOx, NOx, dust | ~90 | | Total | | 15,900 | 8,780 | | | | | | | These figures are part of the results of a project commissioned by NEDO, New Energy and Industrial Technology Development Organization, and conducted by Nippon Steel Corporation. # CO₂ capture and liquefaction in steel works ∼currently being designed∼ - CO<sub>2</sub> capture by chemical absorption and deep-cooling separation, will be employed. - Nippon Steel is studying to introduce these technologies to steel works through the JOGMEC Advanced CCS Projects. # I )Challenges in implementing CO<sub>2</sub> capture and liquefaction #### 1. Securing the installation Space How to secure sufficient space for CO<sub>2</sub> capture and liquefaction in the presence of existing production equipment, piping, and other interferences #### 2. Improve energy efficiency/Reduce CO<sub>2</sub> emissions/Ensure economic rationality - CO $_2$ capture and liquefaction process consume large amounts of energy (especially the heating of the absorbent solution for CO $_2$ desorption). - Developments are needed to increase efficiency and economy of the process. #### 3. Development for low concentration and small CO<sub>2</sub> emission sources. Achieving carbon neutrality requires the capture of CO<sub>2</sub> not only from large emission sources but also from small emission sources. # **II**) Issues regarding overseas CCS #### 1. Arrangement on CO<sub>2</sub> offset credit attribution - In implementing overseas CCS, international arrangements are needed to ensure that the attribution of CO<sub>2</sub> offset credits is clearly defined. #### 2. Regulatory arrangements in CCS - Arrangement on the responsibility of operators for the security and monitoring of stored CO<sub>2</sub> - Setting of storage standards in terms of CO<sub>2</sub> concentration and the amount of impurities in CO<sub>2</sub> that are reasonable from a technical, environmental and economic point of view.